skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "and Gelman, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We combine weighting and Bayesian prediction in a unified approach to survey inference. The general principles of Bayesian analysis imply that models for survey outcomes should be conditional on all variables that affect the probability of inclusion. We incorporate all the variables that are used in the weighting adjustment under the framework of multilevel regression and poststratification, as a byproduct generating model-based weights after smoothing. We improve small area estimation by dealing with different complex issues caused by real-life applications to obtain robust inference at finer levels for subdomains of interest. We investigate deep interactions and introduce structured prior distributions for smoothing and stability of estimates. The computation is done via Stan and is implemented in the open-source R package rstanarm and available for public use. We evaluate the design-based properties of the Bayesian procedure. Simulation studies illustrate how the model-based prediction and weighting inference can outperform classical weighting. We apply the method to the New York Longitudinal Study of Wellbeing. The new approach generates smoothed weights and increases efficiency for robust finite population inference, especially for subsets of the population. 
    more » « less